A Cantor-Bernstein Result for Structured Objects

نویسندگان

  • Joost Engelfriet
  • Tjalling Gelsema
چکیده

The notion of a structure system | sets of structured objects that are composed of atomic objects | is introduced by a collection of axioms. By a uniform change of the atomic objects, the relationship, induced by the atomic objects, between the structured objects is preserved, resulting in a notion of isomorphism of sets of structured objects. By de nition, a relation R on such structured sets satis es the Cantor-Bernstein property if A R B and B R A imply that A and B are isomorphic. It is shown that `isomorphic to a subset' does not satisfy the Cantor-Bernstein property. However, a restricted version of this relation does, resulting in an extension of the Cantor-Bernstein proposition for sets of structured objects. Similar results are shown for multisets of structured objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to Cantor - Schroeder - Bernstein

The Cantor-Schroeder-Bernstein theorem [Can97][Sch98][Ber05] states that any two sets that have injections into each other have the same cardinality, i.e. there is a bijection between them. Another way to phrase this is if two sets A,B have monomorphisms from A to B and B to A, then they are isomorphic in the setting of sets. One naturally wonders if this may be extended to other commonly studi...

متن کامل

Generalizing Cantor-Schroeder-Bernstein: Counterexamples in Standard Settings

The Cantor-Schroeder-Bernstein theorem [Can97][Sch98][Ber05] states that any two sets that have injections into each other have the same cardinality, i.e. there is a bijection between them. Another way to phrase this is if two sets A,B have monomorphisms from A to B and B to A, then they are isomorphic in the setting of sets. One naturally wonders if this may be extended to other commonly studi...

متن کامل

Cantor-bernstein Theorem for Lattices

This paper is a continuation of a previous author’s article; the result is now extended to the case when the lattice under consideration need not have the least element.

متن کامل

Direct Product Decompositions of Infinitely Distributive Lattices

Let α be an infinite cardinal. Let Tα be the class of all lattices which are conditionally α-complete and infinitely distributive. We denote by T ′ σ the class of all lattices X such that X is infinitely distributive, σ-complete and has the least element. In this paper we deal with direct factors of lattices belonging to Tα. As an application, we prove a result of Cantor-Bernstein type for latt...

متن کامل

On interval homogeneous orthomodular lattices

An orthomodular lattice L is said to be interval homogeneous (resp. centrally interval homogeneous) if it is σ-complete and satisfies the following property: Whenever L is isomorphic to an interval, [a, b], in L then L is isomorphic to each interval [c, d] with c ≤ a and d ≥ b (resp. the same condition as above only under the assumption that all elements a, b, c, d are central in L). Let us den...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996